2019 Geminids

2019 Geminid Meteor Shower

One of the best meteor showers of the year is rapidly approaching. Peaking on the night of December 13/14, the Geminids put on a good show with peaks averaging at 120 meteors per hour. Now, with the moon being just past full that night, many of the fainter meteors will be drowned out by moonlight. Don’t be discouraged, though: we still expect to see some 30 meteors per hour. The best time to watch? After midnight, usually around 2:00am is best, but you can start seeing them after 10pm easily enough. Gemini will be high in the sky, and the night time side of Earth will be heading into the meteor stream.

The source of these meteors is from asteroid 3200 Phaethon, named after the son of Helios… Phaeton swings very close to the Sun in its orbit, being one of the Apollo asteroid members. Does it pose a threat to Earth? Not for the next 400 years or so, which is as far as our high-level orbital analysis shows. The asteroid has a 30 year orbit… so maybe in the distant future we might have to worry about this one.

2019 Geminids

Looking east at about 9pm local time, the constellations Orion and Gemini will be well above the horizon. Alas, the moon will also be in Gemini and just past full phase. Rather than looking at the moon-lit Gemini, look straight up and all around in the sky for the Geminid meteors.

The Structure Takes Shape

This has been an exciting couple of weeks. As we have seen our first frost of the season (no snow just yet!), we have been putting up the frame and the structure of the building.  Click on images for full size.

The first wall goes up

The corners of the building have been placed and the first wall frame goes up.

Work on the wall frame continues

Work on the wall frames continues. Soon after this they will be sheathed with plywood.

The structure takes shape.

The four walls are up, and the roof’s lower layers have been installed. There is also a ring for the dome.

The entrance to the structure.

The entrance to the observatory. Note the walls inside have yet to receive their plywood, and the floor needs to have concrete poured.

Frame viewed from the rooftop

A view of the dome base framework from the rooftop. Imagine a large telescope on the pier with a 16′ dome surrounding it. The roof has a slight pitch to allow water and snow to run off to the north. 

Where's the dome? Here!

Another view from the roof. Where is that dome? Here it is! It’s the bundle of materials on the pallet. Some assembly is required. The black mats are covering what will be the walkway to the building.

The Pier is Poured

Yesterday the concrete for the telescope’s pier was poured. What an exciting moment in this telescope’s history. The contractors used a very large Sonotube held rigidly in place with a temporary framework of wood and cables. Internally there is quite the framework of rebar to help reinforce the pier’s strength. A few conduits were also placed inside for electrical and data lines which will drive the telescope. Images (click on them to enlarge):

pier

A view of the building’s site with the framework around the Sonotube for the pier.

pier

A closeup of the pier near the completion of the pour.

Pier

A wide field view of the site.

0.7m Telescope Observatory Construction Begins

This will likely be a series of posts involving some very exciting news here at the observatory: We are adding a new observatory building complete with dome and telescope! Very much exciting times! The new structure will be 16’25’ in dimension with a 16′ diameter dome on the south side. The interior will be divided into two sections: the telescope/equipment room and the control room. A wall with large glass window will separate the two so that people can work with low-level red lighting while keeping the telescope and its sensitive instrumentation in the dark and away from the heat of humans which can cause disturbing air currents.

Artists Impression of the 0.7m Dome

Artists Impression of the 0.7m Telescope Dome.

The telescope is a PlaneWave 0.70m diameter modified Dall-Kirkham optical system with two ports. One port will hold a CCD imager with filter wheel. The other will attach to a fiber-fed echelle spectrograph.  It is difficult to imagine the scale of such an instrument. The telescope alone weighs over 1500 pounds! For a comparison here I am standing besides the same model of instrument at a recent American Astronomical Society meeting.

PlaneWave 0.7m telescope with the author

Ground breaking started a couple of weeks ago. Concrete pouring started today for the pier footing and the footing for the building’s foundation. This will help give a sense of scale the final structure.

The Initial Dig

The boundaries of the structure have been posted here with wooden stakes. The ground is being prepped to dig for the base level foundation.

Gravel base

The gravel base for the concrete has been laid here. Looking closely you can see the inset region in the gravel where the pier for the telescope will rest.

Initial Concrete Pour

The initial concrete pour which took place today. The central region is the base for the telescope pier. The surrounding is the base for the building’s foundation.

 

 

The Perseid Meteor Shower has Arrived

The Annual Perseid Meteor Shower

Each August, the Earth passes through a stream of comet debris from Comet 109P/Swift-Tuttle.  The comet will not be back our way until 2126… so… I wouldn’t wait up for that one.  Along the orbital path, the comet has left behind small bits and pieces, most no bigger than a grain of sand. These run into our planet’s atmosphere and burn up due to friction. The result of this friction-filled reentry is a meteor, a rapid streak of light through the sky.  This shower usually gives us about 60 meteors per hour at peak, and many fireballs: bright meteors that can even be bright enough to cast a shadow.  How to see it?

  • Pick a clear night closest to the peak, which is on August 11th/12th/13th.
  • Go to a dark sky site: avoid lights and cities. The darker, the better.
  • Bring something comfortable to lie down on: sleeping bags are good.
  • Bring food, drink, and bug spray if needed for your location.
  • Spend the night time hours looking up at the sky! No optics required other than your eyeballs.
  • Avoid lights!  No cell phones. No flashlights. Your eyes take between 30-60 minutes to become dark adapted, and you lose that dark adaptation instantly if you see a light. Avoid lights!
  • The shower appears to come from a spot in the sky in the constellation Perseus. This rises just before midnight, so best observing will be after that, into the morning hours.
  • Have fun!

Then and Now: Astrophotography on the Simple Side?

I spent some time this morning with PixInsight on a stack of M-42 images. This is the result. PixInsight is an impressive, though oddly challenging, piece of software. The interface still eludes me at times. The results are splendid, however.

This image was taken through a Nikon D-810a at f/4, 200mm, tracked on an iOptron mount in gusty winds. This piece is the result of three major processes:

  • All images were aligned using stellar centroids.
  • The images were then stacked… this is an image integration of 100 seconds worth of exposures.
  • PixInsight was then used to do a Dynamic Background Extraction to essentially perform a flat field thus removing the lens’ vignetting. I still can’t get over this process: no flat fields required… though I bet real flats would result in a better overall image.

The camera does its own internal bias and dark subtraction. The image was then brought into PhotoShop for adjustment to levels and cropping.

M-42 color integration

Now… compare that colorful image with the monochrome one: that was taken way back in 1986 on Tri-X Pan film pushed to about 1000 ASA by boiling it in nitrogen. The image is a 20 minute exposure through a Celestron C-8 at f/10, manually guided with an illuminated reticle eyepiece. I developed this in my bathroom using duct tape and towels to block all external light from entering.

m42

What a difference! New technology brings better sensitivity and a whole new world of imaging…. but we knew this. I’ve been playing with CCDs since the early 1990s. No surprises. The real surprise? Cost! All this tech adds up in cost. I am not really sure that it saved me a whole lot of time to make the new image with the new tech… perhaps if both images were color? Then, yes, the new tech has saved me time. Simple? M’eh. It’s about the same level of technical detail. It ends up being about one’s knowledge base: software or film developing? You choose. Certainly some of my best images were taken with film. Which do you prefer? It’s totally up to you. Like vinyl records, film is making a comeback, but hasn’t made its way to the realm of astrophotography again. I am pretty sure that CCDs and CMOS sensors are here to stay for astro-art imaging.

  • PixInsight sounds interesting: check out their site here.
  • iOptron? Check out their site here.

Comet 46P/Wirtanen

Comet Wirtanen has been giving us a moderate showing this time around the Sun. As it has been closer to Earth than it usually gets, we are enjoying a comet that might just get bright enough by December 16th to see without a pair of binoculars.  Last night we checked it out through the school’s 16″ telescope and took some images as well.

Comet 46P/Wirtanen: One is through the 16″, the other is a wider field view through a telephoto lens. The brilliant green color is striking and caused by the excited gases: cyanogen (CN)2 and diatomic carbon (C2).

20-21 January 2019: Total Lunar Eclipse

From: https://eclipse.gsfc.nasa.gov/eclipse.html 

We have a splendid opportunity to see a total lunar eclipse this January. It will be taking place late on a Sunday night into the early hours of Monday morning. That Monday is also Martin Luther King, Jr. Day here in the USA, so many schools will not have classes that day. Eclipse timings are given in the above graphic, in Universal Time.  Converting that to the various USA time zones: 

EventPacificMountainCentralEastern
Partial eclipse starts7:34 pm8:34 pm9:34 pm10:34 pm
Total eclipse starts8:41 pm9:41 pm10:41 pm11:41 pm
Total eclipse ends9:43 pm10:43 pm11:43 pm12:43 am
Partial eclipse ends10:51 pm11:51 pm12:51 am1:51 am

Usually the real eclipse visibility starts to take place late in the penumbral phase approaching the first contact of the umbra. If you have not seen a lunar eclipse before, it is quite a special event. The moon will appear to have a charcoal chunk missing from it as the eclipse progresses.  Deeper into the eclipse, the moon will take on a rusty red hue caused by the sunlight passing through the earth’s atmosphere before arriving at the moon. Telescopes are not required, as one can see the whole event easily with the eye. Binoculars and telescopes will offer a nice closeup view.  Photography of the event is a relatively simple affair. A good tripod and telephoto lens will work well with the moderate shutter speeds required.  Tracking is not needed.  An example of a series of photos I took of the last total lunar eclipse is below. The camera was a Nikon D7000 with 200mm telephoto on a tripod. Click for a larger image.

The Annual Leonid Meteor Shower is Upon Us

It is that time of year again when we get to enjoy one of the best meteor showers, the Leonids. This one peaks mid-November and stems from the remains of Comet Tempel-Tuttle which has left its debris in a massive orbital path through which our planet passes yearly. This November the peak is on the mornings of November 17th and November 18th.  This is not likely to be a storm shower, as we have enjoyed in the past. This is more likely to produce anywhere between 10 to 15 meteors per hour. As with all meteor showers, you will see more if you are far away from city and town lights and have clear, transparent skies. Here in the state of New Hampshire, it will also be chilly, so you’ll want a coat, sleeping bag, and some warm food/drink to enjoy while looking up. The meteors will appear to stream out of the head of Leo, the Lion. This is the sky for those mornings (click to enlarge):